If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-92=0
a = 1; b = 0; c = -92;
Δ = b2-4ac
Δ = 02-4·1·(-92)
Δ = 368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{368}=\sqrt{16*23}=\sqrt{16}*\sqrt{23}=4\sqrt{23}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{23}}{2*1}=\frac{0-4\sqrt{23}}{2} =-\frac{4\sqrt{23}}{2} =-2\sqrt{23} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{23}}{2*1}=\frac{0+4\sqrt{23}}{2} =\frac{4\sqrt{23}}{2} =2\sqrt{23} $
| 6x+176=3x+127 | | 34=6m-6 | | 3x+6=2.5(x+6) | | -7x+3+5x=-1 | | 1.5=0-9.72/t | | 7+3x=9x+3 | | 5(2x+2)=3(5x-1) | | 54-(2x+13)=2(x+3)+x | | 54-(2x+13)=2(x+3)+3 | | 3*x-5=7*2x | | 5^2x+2=3^5x-1 | | -2x-8-7x=-53 | | 2/3(1/8+4x)-1/8=7/8 | | -4(r+2)=r+7 | | 2{x-3}-5=7 | | 3x^2+19x-4.5=0 | | 2/3(5/8+2x)-3/8=5/8 | | 7x+6x-42=63-8x | | 5x25=75 | | 2x^2-15X=-5X^2-2X-6 | | x+(3x+10)+2(3x+10)=680 | | z-2/8=1/8 | | 1.5d=1 | | F(x)=((x^2)^2)-8x^2 | | 2m-13=-8= | | x+(3x+20)+2(3x+20)=725 | | -12x(x-12)=-9(1+7) | | 10(1.012^(x+1))=11 | | 20-5x=-9x+4 | | 6-8x=-x-1 | | 10(1.012x+1)=11 | | 8x^2-10x+6=0 |